

OCTOBER 1-5, 2012 EXPO : OCTOBER 3-4 INTEROP

Wireless & Mobility

NEW YORK, NY

JAVITS CENTER

Everything You Need to Know About LTE

Fanny Mlinarsky octoScope, Inc. 3-Oct-2012

Introductions - Fanny Mlinarsky

 President of octoScope

octoScope

- Formerly with Azimuth Systems, Agilent, Teradyne
- Wireless industry CTO and entrepreneur

Introductions - Dr. Hyung Myung

Qualcomm Staff Engineer

octoScope

- Previously with ArrayComm, Samsung Advanced Institute of Technology, InterDigital
- Republic of Korea Air Force; Department of Electronics Engineering at Republic of Korea Air Force Academy faculty member
- BS and MS degrees from Seoul National University, South Korea, MS degree from Santa Clara University, and PhD from Polytechnic Institute of NYU

"Single Carrier FDMA: A New Air Interface for Long Term Evolution", (Wiley, 2008), by <u>Hyung G. Myung</u> and <u>David Goodman</u>

G = generation

3GPP = 3rd generation partnership project

G	The C'e	Peak Data Rate (Mbps)		
	The G S	Downlink	Uplink	
1	Analog	19.2 kbps		
2	Digital – TDMA, CDMA	14.4 kbps		
3	Improved CDMA variants (WCDMA, CDMA2000)	144 kbps (1xRTT); 384 kbps (UMTS); 2.4 Mbps (EVDO)		
3.5	HSPA (today)	14 Mbps	2 Mbps	
3.75	HSPA (Release 7) DL 64QAM or 2x2 MIMO; UL 16QAM	28 Mbps	11.5 Mbps	
	HSPA (Release 8) DL 64QAM and 2x2 MIMO	42 Mbps	11.5 Mbps	
3.9	WiMAX Release 1.0 TDD (2:1 UL/DL ratio), 10 MHz channel	40 Mbps	10 Mbps	
	LTE, FDD 5 MHz UL/DL, 2 Layers DL	43.2 Mbps	21.6 Mbps	
	LTE CAT-3	100 Mbps	50 Mbps	
4	LTE-Advanced	1000 Mbps	500 Mbps	

• 4G => OFDM

- Frequency and time variable wireless channel
- Multipath creates a sum of multiple versions of the TX signal at the RX

Frequency-variable channel appears flat over the narrow band of an OFDM subcarrier.

OFDM = orthogonal frequency division multiplexing

octoScope's LTE Throughput Measurements

www.octoscope.com

Wireless Broadband Market

- Spending on LTE infrastructure worldwide forecast:
 - Triple from \$8.7B this year to \$24.3 billion in 2013 (IHS iSuppli)
 - CAGR of 45% growth over the next 5 years (<u>Dell'Oro</u>)
- <u>Global mobile broadband traffic</u> <u>grew by 83% in the second half of</u> <u>2011</u> with a CAGR of 234% during 2011 (Allot Communications)
 - Video streaming: 88% growth in 2H11; 42% all global bandwidth
 - VoIP and IM traffic grew by 114% in 2H11

Global capital spending by carriers on 4G LTE Infrastructure

In 2016 the number of connected devices will exceed the number of people on earth (7.3B)

Source: United Nations

- Pico base station shipments will begin to exceed macro base station shipments in 2016 (<u>Dell'Oro</u>)
 - Survey: 76% of industry insiders say small cells play a role in their networks
 - Small cells driving surge in microwave and millimeter-wave backhaul
 - Study: Small cell market to hit \$2B by 2016, driven by capacity needs

Issues with small cell architecture include

octoScope

- Increased instances of cell edge interference
- Frequent handovers that may cause interruptions in transmission and dropped connections
- Need provisions for simpler automated installation

Microwave Backhauling

 For small base stations wireless backhaul is more cost-effective than fiber or copper cabling

Small 2G/3G/LTE base stations interconnected via microwave links.

IP vs. 2G Network Architecture

Traditional "Stovepipe"

Stovepipe model – replicates functionality

IMS

IMS – common layers facilitate adding services

Data

octoScope

- Backhaul
- Indoors
- Outdoors
- Why Wi-Fi?

- Abundance of free spectrum (500 MHz just in the 5 GHz band)
- Huge capacity with "good enough" performance for data services

octoScope

18

IEEE 802.11 Emerging Specifications

Ctondord	<u>Overview</u>	Specification			Standard completion
Standard		Transmission rate	Communication range	User velocity	(Target)
11ac	High Throughput w/ wider channels	Up to 6.9 Gbps			Dec/13
11ad	High Throughput in 60 GHz band	Up to 6.8 Gbps	10 m at 1 Gbps		Dec/12
11af	Wi-Fi on TV White Space	802.11n/ac rates scaled to channel	Up to 5 km		Dec/13
11ah	Sub 1 GHz	> 100 kbps	1 km		Mar/15
11ai	Wi-Fi for mobile	Fast initialization (target 100 ms)		Target: + 200 km/h	Mar/14

LTE-Advanced Emerging Technologies

Technologies /Solutions	Objectives
HetNet	Eliminate issues with Femto/Micro/Macro-cell converged network
SON	Self configuration of smaller eNBs
Carrier Aggregation	Implement wider LTE-advanced spectrum with limited spectrum resources. {Asymmetric (DL/UL) band for FDD is available.}
3G / 4G Handover	Enable 3G-4G hand-over (currently not available for LTE)
ΜΙΜΟ	Higher data transmission for Downlink; beamforming for longer range or for multi-user MIMO
(Up to 8 X 8)	Higher data transmission for Uplink or for multi-user MIMO
Relay	Higher data rate, expand coverage, improve cell-edge reception
СоМР	Helps manage band-edge eNB interference: inter-cell interference coordination (ICIC)

HetNet = Heterogeneous networks SON = self organizing networks CoMP = Coordinated multi-point transmission and reception eNB = e Node B DL = downlink UL = uplink FDD = frequency division duplex MIMO = multiple input multiple output

ECC = Electronic Communications Committee

High 700 MHz Band

- LTE is here and works for data
- Unified universal technology serving verticals such as
 - Cellular / wireless broadband
 - Internet of things (M2M)
 - Public Safety
 - Connected vehicle
 - Smart grid

• Next steps:

- IMS and VoLTE
- Carrier to carrier roaming
- 2G to 3G to 4G roaming

For More Information

- Visit <u>www.octoscope.com</u>
- <u>White papers</u>, <u>webinars</u>, <u>presentations</u>, <u>articles</u> and <u>test</u> <u>reports</u> on a variety of wireless topics

