Software-based MIMO Channel Emulator

octoScope

Fanny Mlinarsky octoScope, Inc., Marlborough, MA, USA <u>fm@octoscope.com</u>

Samuel MacMullan, Ph.D. ORB Analytics, Carlisle, MA, USA <u>sam.macmullan@orbanalytics.com</u>

Outline

- What is channel emulation and why is it critical for MIMO systems?
- Channel modeling standards and technologies
- Channel model statistics
- Channel emulator implementation

Wireless Channel

- Frequency and time variable wireless channel
- Multipath creates a sum of multiple versions of the TX signal at the RX
- Mobility of reflectors and wireless devices causes
 Doppler-based fading
- Multiple antenna techniques are used to optimize transmission in the presence of multipath and Doppler fading

Multipath and Flat Fading

- In a wireless channel the signal propagating from TX to RX experiences
 - Flat fading
 - Multipath/Doppler fading

Multipath fading component -15 dB flat fading component

Multiple Antenna Techniques

- SISO (Single Input Single Output)
 - Traditional radio
- MISO (Multiple Input Single Output)
 - Transmit diversity (STBC, SFBC, CDD)
- SIMO (Single Input Multiple Output)
 - Receive diversity, MRC
- MIMO (Multiple Input Multiple Output)
 - SM to transmit multiple streams simultaneously; can be used in conjunction with CDD; works best in high SNR environments and channels de-correlated by multipath
 - TX and RX diversity, used independently or together; used to enhance throughput in the presence of adverse channel conditions
- Beamforming

SM = spatial multiplexing SFBC = space frequency block coding STBC = space time block coding CDD = cyclic delay diversity MRC = maximal ratio combining SM = Spatial Multiplexing SNR = signal to noise ratio

MIMO Based RX and TX Diversity

- When 2 receivers are available in a MIMO radio MRC can be used to combine signals from two or more antennas, improving SNR
- MIMO also enables transmit diversity techniques, including CDD, STBC, SFBC
- TX diversity spreads the signal creating artificial multipath to decorrelate signals from different transmitters so as to optimize signal reception

MIMO = multiple input multiple output SIMO = single input multiple outputs SM = spatial multiplexing SFBC = space frequency block coding STBC = space time block coding CDD = cyclic delay diversity MRC = maximal ratio combining SM = Spatial Multiplexing SNR = signal to noise ratio

octoScope

www.octoscope.com

802.11 Modulation

- 11b (DSSS-CCK) 1, 2, 5.5, 11 Mbps in 2.4 GHz band
- 11a (OFDM) 6, 9, 12, 18, 24, 36, 48, 54 Mbps in 5 GHz band
- 11g both 11b and 11a rates in 2.4 GHz band
- 802.11n 6 to 600 Mbps in
 2.4 and 5 GHz bands
 - MIMO introduces concept of Modulation and Coding Scheme (MCS)
 - Each MCS is determined by modulation, coding rate, # spatial streams, # FEC encoders

Data rate and MCS are automatically selected by the radio based on channel conditions. Above plot shows automatic adaptation of data rate as path loss increases.

IEEE 802.11a,b,g,n Data Rates

	20 MHz Channel			40 MHz Channel				
	1 stream	2 streams	3 streams	4 streams	1 stream	2 streams	3 streams	4 streams
				Data Rat	e, in Mbps			
802.11b 2.4 GHz	1, 2, 5.5, 11							
802.11a 5 GHz	6, 9, 12, 18, 24, 36, 48, 54							
802.11g 2.4 GHz	1, 2, 6, 9, 12, 18, 24, 36, 48, 54							
802.11n 2.4 and 5 GHz	6.5, 13, 19.5, 26, 39, 52, 58.5, 65	13, 26, 39, 52, 78, 104, 117, 130	19.5, 39, 58.5, 78, 117, 156, 175.5, 195	26, 52, 78, 104, 156, 208, 234, 260	13.5, 27, 40.5, 54, 81, 108, 121.5, 135	27, 54, 81, 108, 162, 216, 243, 270	40.5, 81, 121.5, 162, 243, 324, 364.5, 405	54, 108, 162, 216, 324, 432, 486, 540
802.11n, SGI enabled 2.4 and 5 GHz	7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65, 72.2	14.4, 28.9, 43.3, 57.8, 86.7, 115.6, 130, 144.4	21.7, 43.3, 65, 86.7, 130, 173.3, 195, 216.7	28.9, 57.8, 86.7, 115.6, 173.3, 231.1, 260, 288.9	15, 30, 45, 60, 90, 120, 135, 150	30, 60, 90, 120, 180, 240, 270, 300	45, 90, 135, 180, 270, 360, 405, 450	60, 120, 180, 240, 360, 480, 540 600

Validating Radio DSP

 A variety of channel conditions and complex multipleantenna algorithms for adapting to these conditions make a channel emulator necessary for developing and testing radio DSP

octoScope

(Input file)

Channel Modeling

A SISO channel is modeled by a TDL

correlators

A MIMO channel is modeled by multiple TDLs with spatially correlated coefficients, each representing a MIMO path

www.octoscope.com

• • • •

octo<u>Scope</u>

Outline

- What is channel emulation and why is it critical for MIMO systems?
- Channel modeling standards and technologies
- Channel model statistics
- Channel emulator implementation

802.11n Chanel Models A through F

Model		Distance to	#	Delay	Max	#
		1 st wall	taps	spread	delay	clusters
		(avg)		(rms)		
A*	test model		1	o ns	o ns	
В	Residential	5 m	9	15 ns	80 ns	2
С	small office	5 m	14	30 ns	200 ns	2
D	typical office	10 m	18	50 ns	390 ns	3
E	large office	20 m	18	100 ns	730 ns	4
F	large space	30 m	18	150 ns	1050 ns	6
	(indoor or					
	outdoor)					

* Model A is a flat fading model; no delay spread and no multipath

Test Scenarios

Certification

2-way test with 2 or more DUTs

octoScope

MIMO OTA (over the air) test

OTA = over the air DUT = device under test

LTE Test Configuration Example

- Primary antenna for transmit and receive functions
- Secondary antenna for MIMO and receive diversity functions
- Downlink 2x2 and 4x2 transmit diversity
- Downlink 2x2 and 4x2 spatial multiplexing

Base station emulator

Geometry Based Stochastic Models

Work being done by

- 3GPP RAN 4
- COST 2100 Sub Working Group 2.2
- CTIA

Source: 3GPP R4-103856

octoScope

Outdoor Channel Models from 3GPP/3GPP2

Source: 3GPP TR 25.996 V9.0.0 (2009-12)

Model	Case I	Case II	Case III	Case IV
Corresponding 3GPP Designator*	Case B	Case C	Case D	Case A
Corresponding 3GPP2 Designator*	Model A, D, E	Model C	Model B	Model F
PDP	Modified Pedestrian A	Vehicular A	Pedestrian B	Single Path
# of Paths	 4+1 (LOS on, K = 6dB) 4 (LOS off) 	6	6	1

- Spatial Channel Models (SCM)
- Fewer taps (paths), but faster Doppler speeds to model high speed trains and other transport

60 GHz IEEE 802.11ad Channel Models

- Living room, conference room, office cubicles
- 60 GHz channel models incorporate
 - Path loss
 - Human-induced shadowing
 - LOS and NLOS environments
 - Clustering, Beamforming, Polarization

Source: IEEE 11-09-0334-08-00ad-channelmodels-for-60-ghz-wlan-systems

Outline

- What is channel emulation and why is it critical for MIMO systems?
- Channel modeling standards and technologies
- Channel model statistics
- Channel emulator implementation

Doppler Spectrum – Model F

The Doppler spread is 3 Hz at 2.4 and 6 Hz at 5.25 GHz for environment speed of 1.2 km/h

 Example of Doppler spectrrum plots for IEEE 802.11n model F

- Environment velocity is 1.2 km/hr and is modeled on all taps for all models
- Tap 3 for model F includes automotive velocity spike at 40 km/hr

Cumulative Distribution Function (CDF)

• IEEE 802.11n, Model F, CDF for 18 taps

Power Delay Profile (PDP) – Model F

- Power decreases with increasing tap delay.
- Red points are for the normalized PDP under NLOS conditions. Blue points are simulated normalized PDP under LOS conditions.

Channel Impulse Response

• Impulse response, IEEE 802.11n model F

Outline

- What is channel emulation and why is it critical for MIMO systems?
- Channel modeling standards and technologies
- Channel model statistics
- Channel emulator implementation

Software-based Channel Emulator

www.octoscope.com

Channel Emulator Console

Save Configuration

octoScope

Viewing Input and Output Streams

www.octoscope.com

Waveform Analysis

Time (s)

Time (s)

	Average Powe	r (dBm)				
0	-1.9867	-1.9838	-1.9891	-1.9855		
	Channel EVM (dB)					
0	-59.8727	-59.953	-64.0923	-59.9138		
	Stream EVM (dB)					
0	-59.8728	-59.953	-64.0925	-59.9139		
	Cross Power/C	hannel/Stream	n			
0	-9999	-73.705	-73.721	-75.632		
0	-68.599	-9999	-71.465	-71.474		
	-81.868	-77.352	-9999	-81.905		
	-74.652	-74.637	-70.901	-9999		

National Instruments WLAN Toolkit

31

19.9968M

19.9968Ⅳ

0.0000

Frequency (Hz)

0.0000

Frequency (Hz)

Channel 3

0.0

-10.0

-20.0

-30.0

-40.0-

-50.0 Spectr

-60.0

-70.0

-80.0

-90.0

-100.0 -

-19.9984M

Channel Model Configuration	Distortion Configuration			
Protocol 802.11n				
Channel Model E - Large Office LOS present	Es/No (SNR), dB (-30.0 to +80) 15.6 Frequency Shift, ppm (-50 to +50) 15	Spurious (0 to 40) 10		
Carrier frequency, MHz (2000 - 6000) 2450	Phase Noise 🛛	Spur Frequencies, MHz Spur Levels, dBo (-20.0 to +20.0) (-90.0 to +20.0)		
Antenna Spacing (wavelengths)	Phase noise 3dB BW, kHz (? to ?) 10			
2.9 cm 5.8 cm		0 0 0		
Correlation Complex -	IQ imbalance M Amplitude, dB (? to ?) 2	0 0 0		
Fluorescent Light Frequency, Hz 60 💌	Phase, deg (? to ?) 3.5	0 0 0		
Keep seed fixed Seed (0 - 2^32) 2355		0 0 0		
Return				

www.octoscope.com

Return

Software Operation

octoScope

References

- IEEE, 802.11-03/940r4: TGn Channel Models; May 10, 2004
- Schumacher et al, "Description of a MATLAB® implementation of the Indoor MIMO WLAN channel model proposed by the IEEE 802.11 TGn Channel Model Special Committee", May 2004
- Schumacher et al, "From antenna spacings to theoretical capacities guidelines for simulating MIMO systems"
- Schumacher reference software for implementing and verifying 802.11n models http://www.info.fundp.ac.be/~lsc/Research/IEEE 80211 HTSG CMSC/distribution_terms.html
- 3GPP 36-521, UE Conformance Specification, Annex B
- 3GPP TR 25.996, "3rd Generation Partnership Project; technical specification group radio access networks; Spatial channel model for MIMO simulations"
- IST-WINNER II Deliverable 1.1.2 v.1.2, "WINNER II Channel Models", IST-WINNER2, Tech. Rep., 2008 (<u>http://projects.celtic-initiative.org/winner+/deliverables.html</u>)
- 3GPP TR37.976, MIMO OTA channel models
- IEEE, 11-09-0334-08-00ad-channel-models-for-60-ghz-wlan-systems