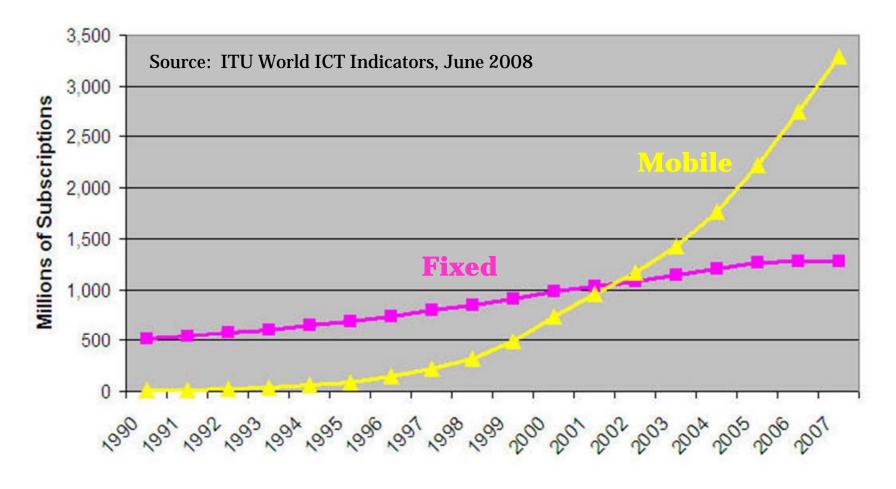
The Road to 4G Wireless

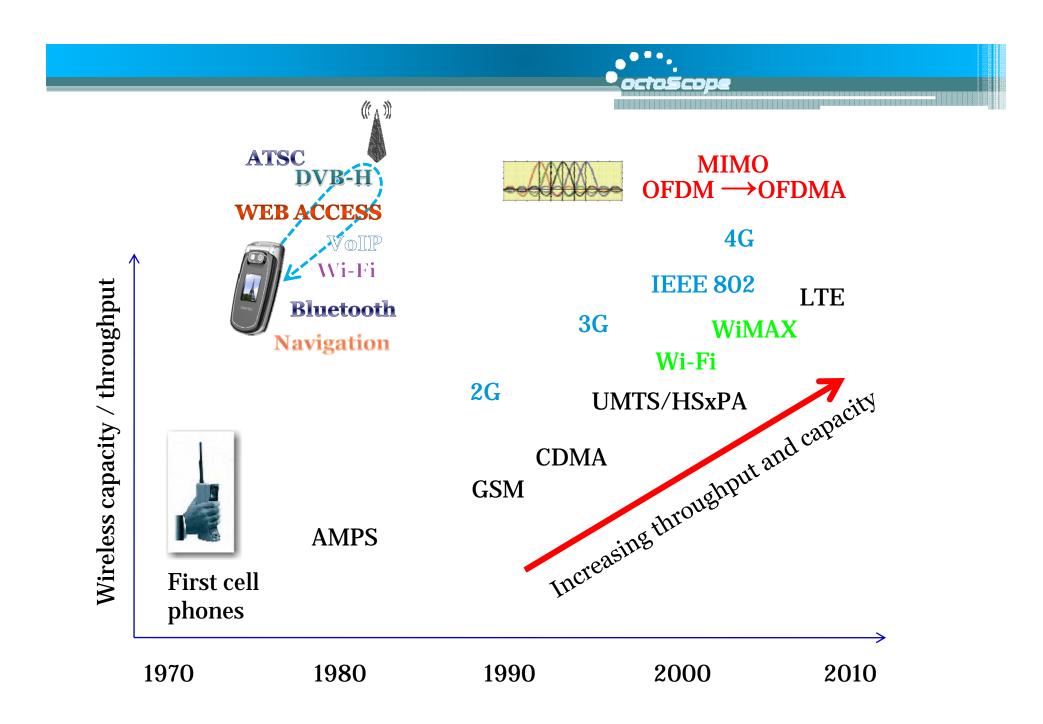
octoScope

Fanny Mlinarsky octoScope Interop/Vegas May 2009

Agenda


Fanny Mlinarsky, octoScope

- History and overview of wireless broadband


aScoa(

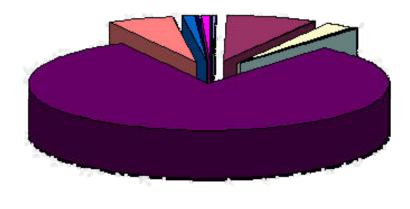
- Mike Seymour, Alcatel-Lucent
 - Vice President Wireless Solutions & Marketing
 - Market segmentation for LTE and WiMAX
- Prakash Sangam, Qualcomm
 - Sr. Manager Technical Marketing
 - LTE and 3G evolution

It's a Mobile World

octoScope

The 'G's

G	Summary	Data Rates		
1	Analog – AMPS, NMT, TACS	Typical 2.4 Kbps; max 22 Kbps		
2	Digital – TDMA, CDMA	9.6 - 14.4 Kbps (circuit data)		
2.5	GPRS – mux packets in voice timeslots	15 - 40 Kbps		
3	Improved modulation, using CDMA variants	50 – 144 Kbps (1xRTT); 200 – 384 Kbps (UMTS); 500 Kbps – 2.4 Mbps (EVDO)		
3.5	More modulation tweaks	2–14 Mbps (HSPA)		
4	New modulation (OFDMA); Multi-path (MIMO); All IP	LTE: >10 Mbps; eventual potential >100 Mbps		


octoScope

Source: Brough Turner

GSM is Dominant Today

- GSM used by 81% of subscribers worldwide
 AT&T and T-Mobile use GSM in the US today
- Asia leads with 42% of all mobile subscriptions

Mobile subscriptions, 2Q-08

<mark>⊫</mark> cdmaOne
CDMA2000 1X
CDMA2000 1xEV-DO
CDMA2000 1xEVDO Rev.A
GSM
■WCDMA HSPA
■ TDMA
■ PDC
■ iDEN
Analog

2004

Source: Wireless Intelligence / GSM Association

IEEE 802.11

- **1989**: FCC authorizes ISM bands (Industrial, Scientific and Medical)
 - 900 MHz, 2.4 GHz, 5 GHz
- 1990: IEEE begins work on 802.11
- **1994**: 2.4 GHz products begin shipping
- **1997**: 802.11 standard approved
- 1998: FCC authorizes the UNII (Unlicensed National Information Infrastructure) Band - 5 GHz
- 1999: 802.11a, b ratified
- 2003: 802.11g ratified
- 2006: 802.11n draft 2 certification by the Wi-Fi Alliance begins
- 2009: 802.11n draft 10 released in May

taScone

20??: 802.11 ac/ad: 1 Gbps Wi-Fi

802.11 has pioneered commercial deployment of OFDM and MIMO – key wireless signaling technologies today

IEEE 802.16

- 1998: IEEE formed 802.16 WG
 - Started with 10–66 GHz band; later modified to work in 2–11GHz to enable NLOS (non-line of site)
- **2004:** IEEE 802.16-2004d
 - Fixed operation standard ratified
- **2005:** 802.16-2005e
 - Mobility and scalability in 2–6 GHz
- **2009:** P802.16Rev2/D9
 - Approved by IEEE on 13 May 2009
- Future: 802.16m next generation
 - SDD (system definition document)
 - SRD (system requirements document)

From OFDM to OFDMA

taScone

orthogonal frequency division multiplexing orthogonal frequency division multiple access

3GPP (3rd Generation Partnership Project)

6004

- Partnership of 6 regional standards groups, which translate 3GPP specifications to regional standards
- ITU references the regional standards

ITU - International Mobile Telecommunications

IMT-2000

- Global standard for third generation (3G) wireless communications
- Provides a framework for worldwide wireless access by linking the diverse systems of terrestrial and satellite based networks.
- Data rate limit is approximately 30 Mbps
- Detailed specifications contributed by 3GPP, 3GPP2, ETSI and others

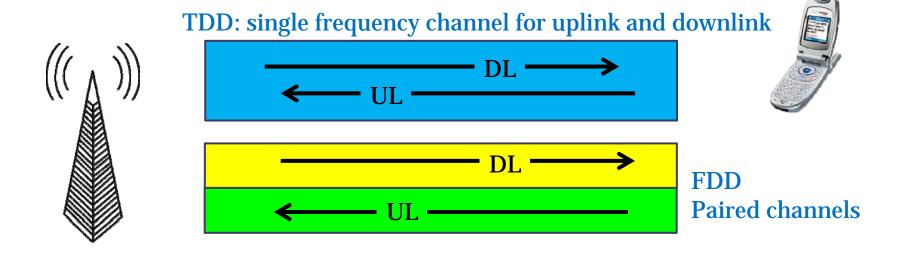
IMT-Advanced

- New generation framework for mobile communication systems beyond IMT-2000 with deployment around 2010 to 2015
- Data rates to reach around 100 Mbps for high mobility and 1 Gbps for nomadic networks (i.e. WLANs)
- IEEE 802.16m working to define the high mobility interface
- IEEE 802.11ac and 802.11ad VHT (very high throughput) working to define the nomadic interface

oScone

ITU Frequency Bands for IMT Advanced

 450-470 MHz, 698-960 MHz, 1710-2025 MHz, 2110-2200 MHz, 2300-2400 MHz, 2500-2690 MHz, 3400-3600 MHz



Time division duplex

taScone

Frequency division duplex (full and half duplex)

White Spaces Sharing of the TV Spectrum

- 6 MHz TV channels 2-69
 - VHF: 54-72, 76-88, 174-216 MHz
 - UHF: 470-806 MHz
- 2009 transition from analog to digital TV frees up channels 52-69 due to higher spectral efficiency of digital TV
- White Spaces legislature advocated the WIA (www.wirelessinnovationalliance.org)
- The new regulations (FCC Dockets 04-186, 02-380) require the use of cognitive radios to determine whether a channel is available prior to transmitting.
- IEEE 802.19 and IEEE 1900 working on the standards

toScone

Release		
99	Mar. 2000	UMTS/WCDMA
5	Mar. 2002	HSDPA SGR
6	Mar. 2005	HSUPA
7	2007	DL MIMO, IMS, services (VoIP, gaming, push-to-talk)

aScoa

Long Term Evolution (LTE)

- 3GPP work on LTE started in November 2004
- Standardized in Rel-8
- Spec finalized and approved in January 2008
- Target deployment in 2010
- LTE-Advanced study phase in progress

WiMAX and LTE Scalability

	WiMAX						
Channel bandwidth (MHz)	1.25	5	10	20	3.5	7	8.75
Sample time (ns)	714.3	178.6	89.3	44.6	250	125	100
FFT size	128	512	1024	2048	512	1024	1024
Sampling factor (ch bw/sampling freq)	28/25			8/7			
Subcarrier spacing (kHz)	10.9375			7.8125 9		9.766	
Symbol time (usec)	91.4				128		102.4

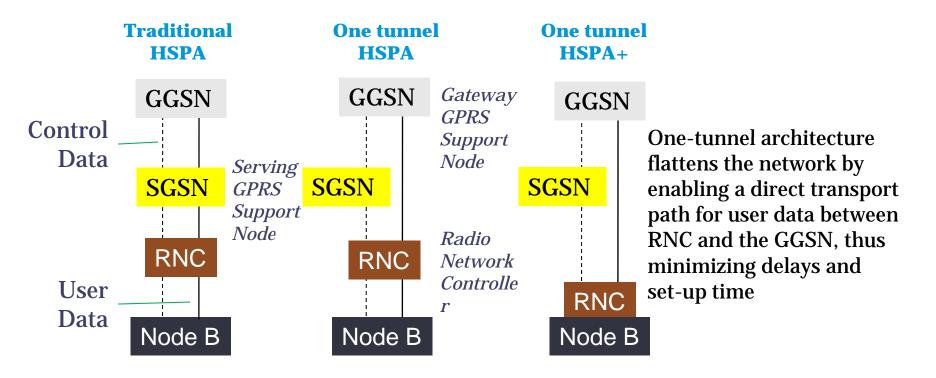
octoScope

	LTE						
Channel bandwidth (MHz)	1.4	3	5	10	15	20	
FFT size	128	258	512	1024	1536	2048	

3G/4G Comparison

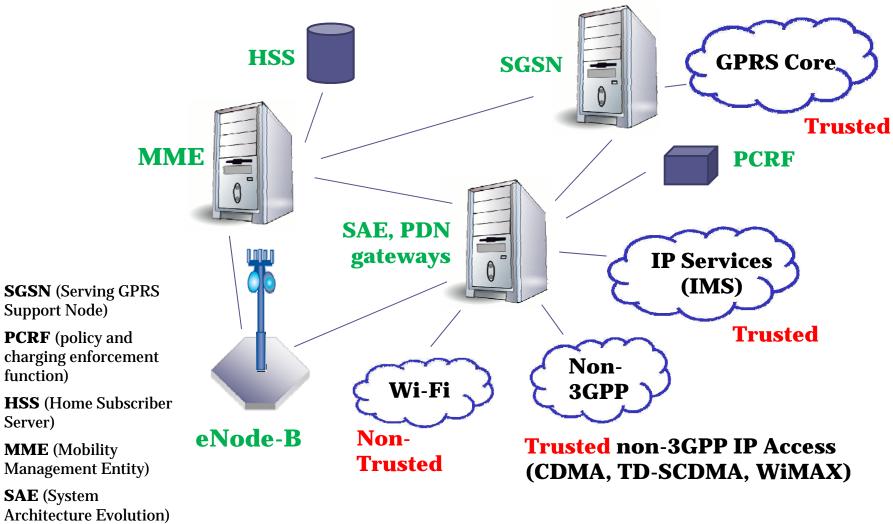
	Peak Data	Access time		
	Downlink	Uplink	(msec)	
HSPA (today)	14 Mbps	2 Mbps	50-250 msec	
HSPA (Release 7) MIMO 2x2	28 Mbps	11.6 Mbps	50-250 msec	
HSPA + (MIMO, 64QAM Downlink)	42 Mbps	11.6 Mbps	50-250 msec	
WiMAX Release 1.0 TDD (2:1 UL/DL ratio), 10 MHz channel	40 Mbps	10 Mbps	40 msec	
LTE (Release 8), 5+5 MHz channel	43.2 Mbps	21.6 Mbps	30 msec	

Release 8 – LTE Release 9 – enhancements to LTE, 2009 Release 10 - LTE Advanced (1Gbps DL and 500 Mbps UL, 100 MHz bw), 2010



HSPA and HSPA+

HSPA+ is aimed at extending operators' investment in HSPA


- 2x2 MIMO, 64 QAM in the downlink, 16 QAM in the uplink
- Data rates up to 42 MB in the downlink and 11.5 MB in the uplink.

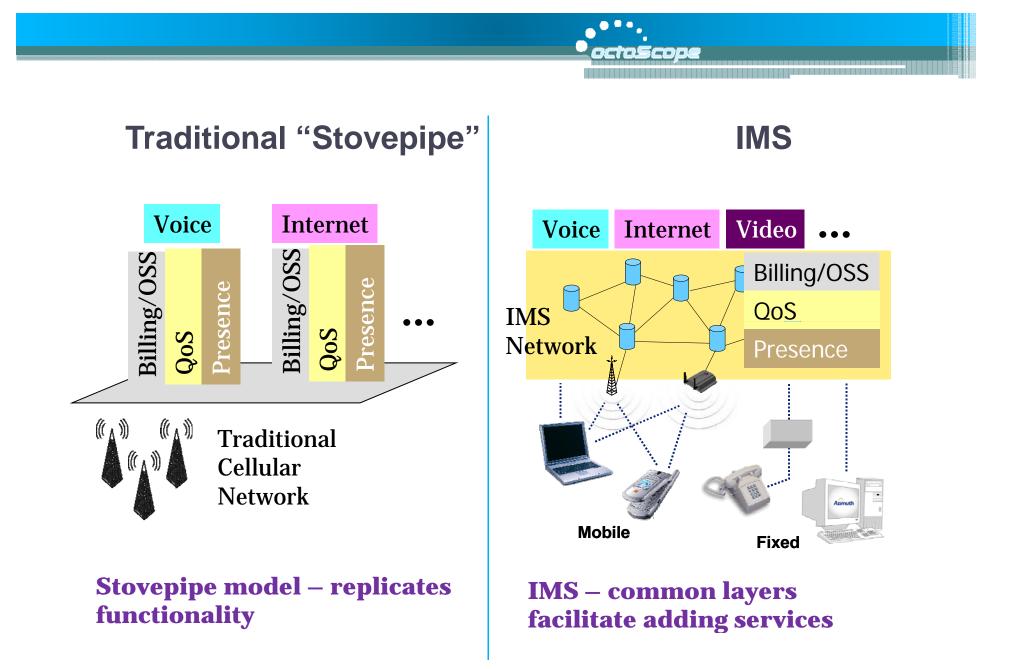
HSPA+ is CDMA-based and lacks the efficiency of OFDM

LTE SAE (System Architecture Evolution)

ctoScope

SAE includes RAN and EPS

PDN (Public Data


Network)

LTE Architecture – IMS Based

- LTE specifies IP multimedia subsystem (IMS), optimizing the architecture for services.
- IMS is being used in wired infrastructure to enable VoIP and other applications; LTE expands on this capability to deliver seamless services.
- Hotspot-like initial deployments, primarily in urban areas will leverage HSPA for full coverage
- Most LTE devices will be multi-mode, supporting HSPA and other interfaces
- LTE femtocells will be integrated in the architecture from the onset to increase capacity and indoor coverage.

6004

Operator Influence on LTE

- LTE was built around the features and capabilities defined by Next Generation Mobile Networks (NGMN) Alliance (www.ngmn.org)
 - Operator buy-in from ground-up
- LTE/SAE (Service Architecture Evolution) Trial Initiative (LSTI) formed through the cooperation of vendors and operators to begin testing LTE early in the development process (www.lstiforum.org)
- NGMN defines the requirements
- LSTI conducts testing to ensure conformance.

6000

20

formed 9/2006 by major operators: > Sprint Nextel > China Mobile > Vodafone > Orange > T-Mobile > KPN Mobile > NTT DoCoMo

On the Road to 4G

- WiMAX appears to have 3-4 lead over LTE, but...
 - Most deployments are fixed WiMAX in the developing world

taScone

- All eyes are on Clearwire to see if mobile WiMAX can compete here in the US
- When will LTE see significant deployments?
 - Ink is not yet dry on the 3GPP standard
 - History shows a few years lag between standard ready and initial deployments
- Will 3G delay LTE?
- How will HSPA, WiMAX and LTE coexist and what will the market segmentation be?
- What role will open spectrum (white spaces) play?

Q & A

Fanny Mlinarsky, octoScope Mike Seymour, Alcatel-Lucent Prakash Sangam, Qualcomm

www.octoscope.com

octoScope

<u>info@octoscope.com</u> +1 (978) 376-5841

Additional Material

First Generation

Advanced Mobile Phone Service (AMPS)

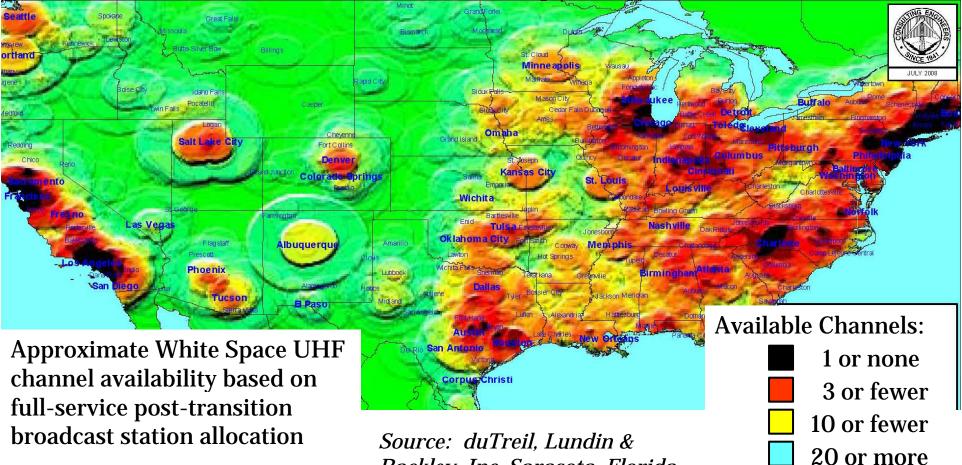
- US trials 1978; deployed in Japan ('79) & US ('83)
- 800 MHz; two 20 MHz bands; TIA-553
- Nordic Mobile Telephony (NMT)
 - Sweden, Norway, Demark & Finland
 - Launched 1981
 - 450 MHz; later at 900 MHz (NMT900)
- Total Access Communications System (TACS)
 - British design; similar to AMPS; deployed 1985

2G - CDMA

Code Division Multiple Access

- All users share same frequency band
- Qualcomm demo in 1989
 - Claimed improved capacity & simplified planning
- First deployment in Hong Kong late 1994
- Major success in Korea (1M subs by 1996)
- Adopted by Verizon and Sprint in US
- Easy migration to 3G (same modulation)

2G - GSM


Originally "Groupe Spécial Mobile "

- Joint European effort beginning in 1982 focused on seamless roaming across Europe

rtoScone

- Services launched 1991
 - Time division multiple access (8 users per 200KHz)
 - 900 MHz band; later extended to 1800 MHz; then 1900 MHz
 - Quad-band "world phones" support 850/900/1800/1900 MHz
- GSM dominant world standard today
 - Well defined interfaces; many competitors; lowest cost to deploy

White Space Channel Availability

teScon

Rackley, Inc. Sarasota, Florida

30 or more