White Space Strategies

Fanny Mlinarsky octoScope

TV Spectrum Availability

- 6 MHz TV channels 2-69
 - VHF: 54-72, 76-88, 174-216 MHz
 - UHF: 470-806 MHz
- November 4, 2008 FCC allowed unlicensed use of TV White Spaces
- June 12, 2009 transition from analog to digital TV freed up channels 52-69 due to higher spectral efficiency of digital TV

TVBD = TV Band Device

White Spaces Radio Technology

- FCC Docket 04-186 requires the use of cognitive radio technology to determine whether a channel is available prior to transmitting.
- Methods for detecting licensed transmissions:
 - An internal GPS could be used in conjunction with a database to determine whether the TVBD is located far enough away from licensed stations.
 - TVBD could incorporate sensing capabilities to detect whether licensed transmitters are in its range. If licensed devices are detected, the TVBD would have to search for another channel.

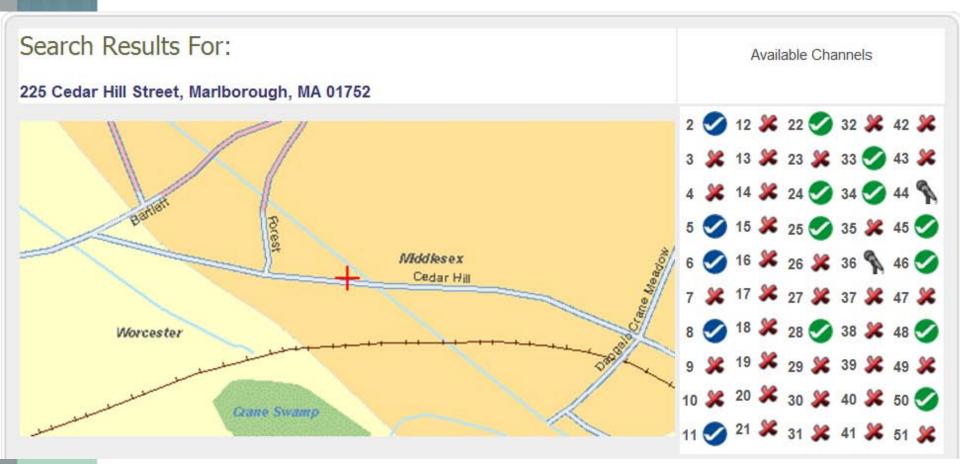
FCC Rules

- Devices require geolocation capability and Internet access to a database of protected radio services. The TVBDs must first access the database before operating.
- Fixed devices may operate on any channel between 2 and 51, except 3, 4 and 37
- Up to 4 Watts EIRP (Effective Isotropic Radiated Power)
- Channels 2 20 are restricted for used by fixed devices to protect wireless microphones
- Fixed and personal portable devices must sense TV broadcasting and wireless microphone signals

Frequency Allocation of TV Channels by the FCC

	Channel #	Frequency Band	
Fixed TVBDs only	2-4	54-72 MHz	VHF
	5-6	76-88 MHz	
	7-13	174-216 MHz	
	14-20	470-512 MHz**	UHF
	21-51*	512-692 MHz	

http://www.fcc.gov/mb/engineering/usallochrt.pdf



^{*}Channel 37 (608-614 MHz) is reserved for radio astronomy

^{**}Shared with public safety

www.showmywhitespace.com

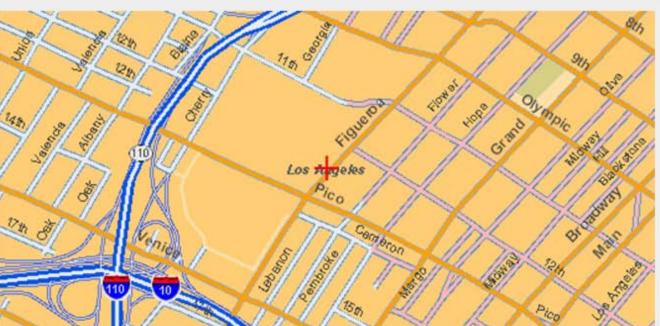
Legend

location is within the service area of a TV station or other licensed user and this channel cannot be used by a TVBD

this channel is vacant and can be used by a TVBD

this channel is vacant and can be used by a TVBD, but personal portable devices may not be used on channels 2-20

this channel is in a major metropolitan area and reserved for wireless microphone use only.



www.showmywhitespace.com

Search Results For:

1201 South Figueroa Street, los angeles, CA 90015

Available Channels

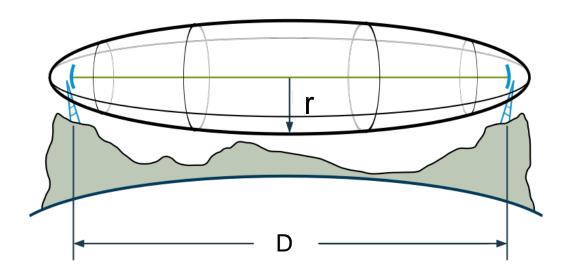
Beach-front Property?

octoScope

RF and Wireless Technology Experts

- Lower frequencies
 experience lower
 attenuation in free space
 and through obstructions,
 e.g. buildings
- However, when propagating through metal frames in modern buildings, Fresnel zone gets constricted and attenuation is introduced

Antenna – optimum length is a multiple of ¼ wavelength

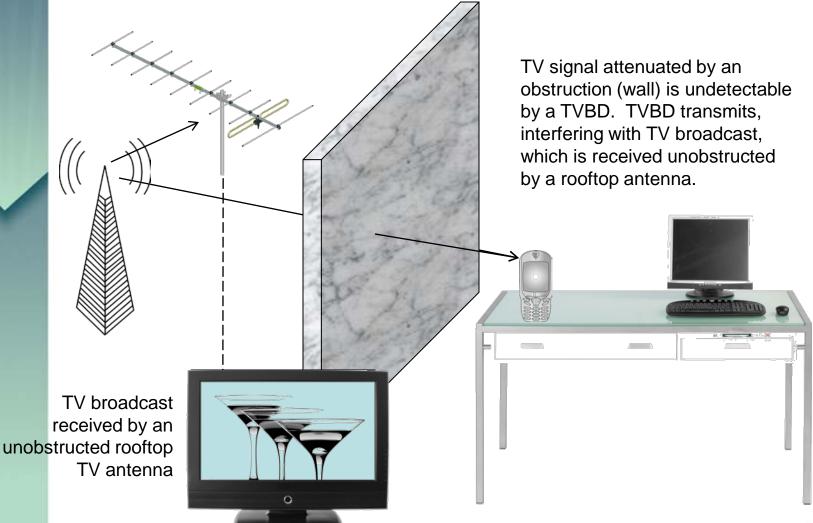

3.3 feet for 70 MHz 4" for 700 MHz 1" for 2.4 GHz

Longer antennas required for UHF may be problematic for handheld devices

Antenna Fresnel Zone

$$r = 72.05\sqrt{\frac{D}{4f}}$$

r = radius in feetD = distance in milesf = frequency in GHz


- *Fresnel zone* is the shape of electromagnetic signal and is a function of frequency
- Constricting the Fresnel zone introduces attenuation and signal distortion

Example: D = 0.5 mile r = 30 feet for 700 MHz r = 16 feet for 2.4 GHz r = 10 feet for 5.8 GHz

Hidden Node Scenario

Hidden Node – an Issue?

- Analysis and field testing done by ITU-R, FCC and other organizations demonstrate that even when a TVBD is deep inside a building, the signal reaching it is likely to be at most 30 dB lower than the signal at a rooftop antenna.
- The 802.22 draft sets the detection threshold 30 dB below a tuner's lowest receive level and states that an unlicensed device must detect a broadcast within 2 seconds and with probability of >=90%.

White Spaces Communications Standards

- IEEE 802.22
 - Based on 802.16d
 - Ongoing effort for almost 5 years
 - Worked with the FCC on White Spaces regulations
- IEEE 802.19
 - Coexistence standards
- IEEE 802 Study Group
- Work now starting in the 802.11 White Spaces Study Group

What's to Come...

- Products expected in about 2 years
- Wi-Fi may be the first protocol to make use of white spaces
- Contentious standardization process

www.octoscope.com

info@octoscope.com

+1 (978) 376-5841

