

White Spaces Regulations and Standards

4GWE - Los Angeles, CA

Fanny Mlinarsky President, octoScope

6-Oct-10

THE WALLSTRUML OURNAL

WSJ.com

SEPTEMBER 24, 2010

FCC to Open Unused TV Airwaves, Extending Wi-Fi's Possibilities

- Sep 23, 2010 The FCC reaffirmed a 2008 decision to open the broadcast airwaves
- Enables Wi-Fi networks with longer range
 - Microsoft reports achieving a mile of operating range on their Redmond, Wash., campus
- Broadcasters and wireless microphone operators expected to resume the law suit filed against the FCC in 2009 to stop new uses of the TV spectrum

Introducing TV White Spaces

- Spectrum under 3 GHz has significant unused capacity
 - Average occupancy over various locations studied is 5.2% and the maximum occupancy is 13.1% (in New York City)
 - Shared Spectrum Company, NSF funded measurements, http://www.sharedspectrum.com/measurements
- Only 10% of Americans receive broadcast TV
 - J. H. Snider and Max Vilimpoc, "Reclaiming the vast wasteland" http://vilimpoc.org/research/policy/Issue-Brief-12-Unlicensed-Sharing-of-Broadcast-Spectrum.pdf
- The economic potential for the TV white spaces was estimated at \$100 billion
 - R. Thanki, "The economic value generated by current and future allocations of unlicensed spectrum," http://www.ingeniousmedia.co.uk/websitefiles/Value_of_unlicensed_-website_-FINAL.pdf
- Modern technology allows effective sharing of sparsely used TV broadcast spectrum
- In 2004, the FCC started investigating the potential of allowing operation of unlicensed 2-way data communications in the TV broadcast VHF and UHF bands

History and Regulatory Landscape

- NPRM in May 2004
 - http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-04-113A1.pdf
- November 4, 2008 FCC approved Report & Order 08-260, allowing unlicensed use of TV band spectrum
 - http://hraunfoss.fcc.gov/edocs_public/attachmatch/DA-01-260A1.pdf
- February 17, 2009, the FCC released the final rules for "Unlicensed Operation in the TV Broadcast Bands"
 - http://edocket.access.gpo.gov/2009/pdf/E9-3279.pdf
- Ofcom (UK) is in the process of making this Digital Dividend band available
 - https://mentor.ieee.org/802.18/dcn/09/18-09-0059-00-0000-ofcom-update-on-the-digital-dividend.ppt
- ECC of CEPT in Europe is conducting consultation on the band
 - http://www.ero.dk/D9634A59-1F13-40D1-91E9-DAE6468ED66C?frames=no&
 - Requirements for operation of cognitive radio systems in the "white spaces" of the frequency band 470-790 MHz
 - Consultation closes 11/30/10
- China TV band regulations expected in 2015

Frequency Allocation of TV Channels

Fixed TVBDs only

Channel #	Frequency Band	
2-4	54-72 MHz	
5-6	76-88 MHz	VHF
7-13	174-216 MHz	
14-20	470-512 MHz**	ППЕ
21-51*	512-692 MHz	UHF

^{*}Channel 37 (608-614 MHz) is reserved for radio astronomy

http://www.fcc.gov/mb/engineering/usallochrt.pdf

Transition from NTSC to ATSC (analog to digital TV) in June 12, 2009 freed up channels 52-69 (above 692 MHz)

^{**}Shared with public safety

Unlicensed Bands and Services

Frequency range	Bandwidth	Band	Notes	
433.05 – 434.79 MHz	1.74 MHz	ISM	Europe	
420–450 MHz	30 MHz	Amateur	US	
868-870 MHz	2 MHz	ISM	Europe	
902–928 MHz	26 MHz	ISM-900	Region 2	
2.4–2.5 GHz	100 MHz	ISM-2400	International allocations (see slides 7,	
5.15-5.35 GHz	200 MHz	UNII-1,2		
5.47-5.725 GHz	255 MHz	UNII-2 ext.		
5.725–5.875 GHz	150 MHz	ISM-5800 UNII-3	8 for details)	
24-24.25 GHz	250 MHz	ISM	US, Europe	
57-64 GHz 59-66 GHz	7 GHz	ISM	US Europe	

Medical devices Remote control

RFID and other unlicensed services

Smart meters, remote
 ← control, baby
 monitors, cordless

phones 802.11b/g/n, Bluetooth 802.15.4 (Bluetooth, ZigBee), cordless phones

← 802.11a/n, cordless phones

Emerging 802.11ad ← 802.15.3c, ECMA-387 WirelessHD

Americas, including US and Canada; Australia, Israel

European analog of the ISM-900 band

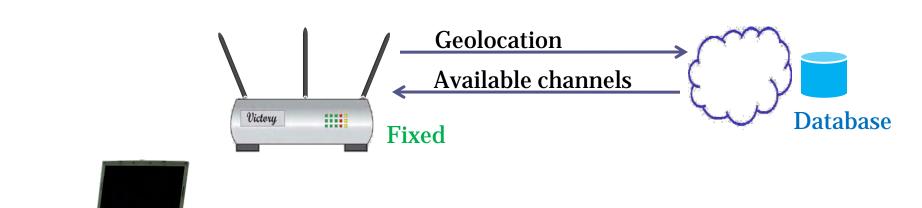
Operation in TV Bands – Latest Rules

Access based on *geo-location & database* or *spectrum sensing*

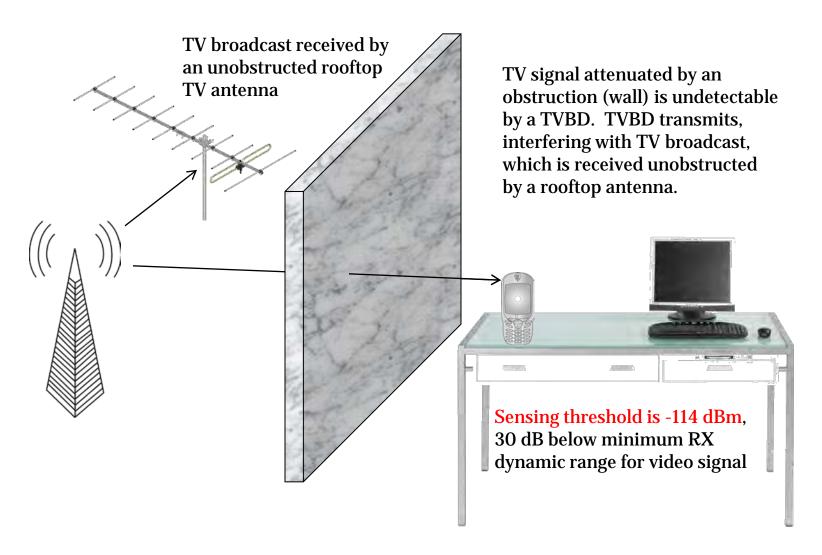
For fixed TVBDs max output power < 4 Watts EIRP

Must access a TV bands database over the Internet to determine channel availability

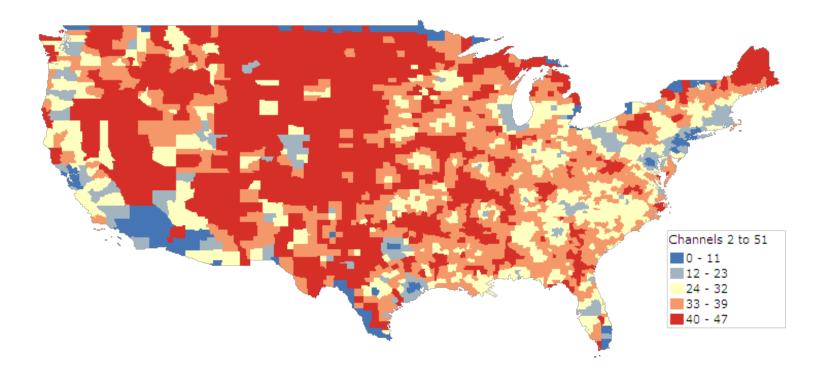
For PP TVBDs max output power < 100 mW EIRP on nonadjacent channels and < 40 mW EIRP on adjacent channels


Mode I: obtain a list of available channels from a master device

Mode II: incorporate geolocation capability


Database

- Fixed TVBDs require geolocation capability and Internet access to a database of protected radio services.
- White Spaces Database Group was started by Google and other companies to create and standardize the database.


Spectrum Sensing

Taking Advantage of TV White Spaces

 Channel availability based on the geolocation query of TV band internet database

Source: Rick Tornado, Spectrum Bridge

IEEE TV Band Related Standards

- 802.11af formed in January 2010 to adapt 802.11 to TV band operation
- 802.16h originally organized to adapt 802.16 to the 3650-3700 MHz contention band now working on TV band operation of 802.16
- 802.22 cognitive radio approach
 - Regional Area Networks group that guided the FCC in the recent TV band regulations
 - Uses spectrum sensing and location information to determine whether given transmit frequencies and power levels will cause harmful interference to licensed services.
- 802.19 TAG defines coexistence among dissimilar networks that will operate in the TV band
- SCC 41 defines layers above the MAC and PHY for dynamic spectrum access networks

Contention Band

- March 2005 FCC offered 50 MHz 3650 to 3700 MHz for contention-based protocol
- 802.11y and 802.16h are expected to share this band
- 21st century regulation geared for digital communications
 - multiple services to share the band in an orderly way

- * 300 Million licenses one for every person or company
- * \$300 per license for 10 years
- * Registered stations (base stations): 1 W/MHz, ~15 km
- Unregistered stations (handsets, laptops): 40 mW/MHz, 1-1.5 km

802.11af

IEEE P802.11af™/D0.05, August 2010 (Draft Amendment to IEEE P802.11mb/D5.0)

EEE 802.11

IEEE P802.11af™/D0.05

Draft Standard for Information Technology—

- Re-band the popular 802.11 systems; capitalize on work already done for 802.11y
 - Use 5, 10, 20 and 40 MHz wide channels
 - FCC EIRP: 4 W, 100 mW, 50 mW
- Possible deployment scenarios
 - Indoor (< 100 m): like present WLAN
 - Outdoor (< 5 km): comparable to the range of typical urban model
- Database is considered out of scope of 802.11af

Ecma and CogNeATV Band Standard

- Ecma International TC48-TG1 is developing PHY-MAC and coexistence protocols for wireless networks in the TV band http://www.ecma-international.org/memento/TC48-TG1.htm
- Sponsor Organization: Ecma International (http://www.ecma-international.org) and CogNeA (http://www.cognea.org)
- CogNeA and Ecma TC48-TG1 standard
 - CogNeA is an industry alliance formed in 2008 to develop a specification for white spaces.
 - In March 2009 the draft/early specification developed by CogNeA was transferred to the Technical Committee 48 Task Group 1 (TC48-TG1) within Ecma-International
 - http://www.ecma-international.org/publications/files/drafts/tc48-tq1-2009-132.pdf

Future of TV Band Use

- Dynamic spectrum market with the database access capability
 - Buy spectrum for a slice of time/space/band
- Protocol? Contention-based Wi-Fi?
 - Currently no plans to regulate by the FCC
- Technology must evolve to make flexible use of available channels up to 6 GHz
 - RF front end technology still not ready for this

To Learn More...

- Articles, white papers, test reports and presentations
 - http://www.octoscope.com/English/Resources/Articles.html

Contact

Fanny Mlinarsky (fm@octoScope.com)

Mobile: 978.376.5841

www.octoscope.com

Wireless CTO and product development services