

A Glimpse at the Wireless Data Communications Standards

Fanny Mlinarsky 8 August 2007

IMS Infrastructure for FMC

Standards for FMC

- **Given Scheme Sc**
 - > GAN/UMA 2G
 - VCC 3G/4G
 - I-WLAN (no handoff)
- IEEE
 - 802.11n, k, u, v, y, s

GAN = generic access network

VCC = Voice Call Continuity

UMA = unlicensed mobile access

- > 802.16e, m
- ▶ 802.21

GAN / UMA **GSM** Infrastructure GANC WLAN GAN / UMA **GSM/WiFi phones**

I-WLAN = Interworking-WLAN IMS = internet multimedia subsystem

IEEE 802.11 Active Task Groups

- □ TGk Radio Resource Measurements
- □ TGn High Throughput
- □ TGp Wireless Access Vehicular Environment (WAVE/DSRC)
- □ TGr Fast Roaming
- □ TGs ESS Mesh Networking
- □ TGT IEEE 802 Performance
- □ TGu InterWorking with External Networks
- □ TGv Wireless Network Management
- **TGw Protected Management Frames**
- □ TGy 3650-3700 MHz Operation in USA
- DLS Direct Link Setup Study Group

http://grouper.ieee.org/groups/802/11

802.11n Summary

- Minimum of 100 Mbps throughput at the MAC SAP interface with no 802.11 overhead;
 - > data rate reaches 600 Mbps with 4 spatial streams in 40 MHz channels
- PHY improvements
 - > Spatial Multiplexing, Beamforming, up to 4x4 MIMO, 40 MHz channels
- MAC improvements
 - Frame aggregation, block acknowledgements
- Battery life improvements for handsets
 - Sleep mode with scheduled packet delivery

Real implementations use up to 2 spatial streams and the following configurations:

2x2, 2x3, 3x3 Extra transmitters or receivers implement diversity

802.11s Mesh for Municipal Outdoor Networks

Lightly Regulated Band for Contention-based Networks

- March 2005 FCC offered 50 MHz at 3650 to 3700 MHz for contention-based protocol
- 802.11y meets FCC requirement; 802.16h is working to comply
- 21st century regulation geared for digital communications
 - multiple services to share the band in an orderly way

- 300 Million licenses one for every person or company
- \$300 per license for 10 years
- Registered stations (base stations): 1 W/MHz, ~15 km
- Unregistered stations (handsets, laptops): 40 mW/MHz, 1-1.5 km

802.11k,v,w for Enterprise-grade Performance and Management

- 802.11k Radio Resource Measurements
 - Protocol to map the network, measure signal levels and traffic levels at every device
 - > Assist with fast handoff for voice handsets
 - Determine whether network segments have sufficient QoS performance for mission-critical services such as VoIP
 - > Monitor Enterprise WLAN from a central point
- 802.11v Wireless Network Management
 - Protocols for location protocol, load sharing, fast handoff management, power conservation for handsets, device location
- B02.11w Protected Management Frames
 - Encrypt 802.11 k,v management frames to protect from attackers

□ 802.11u - InterWorking with External Networks

- Goal: Interworking with external networks, including other 802 based networks such as 802.16 and 802.3 and 3GPP based IMS networks
- Network discovery, emergency call support (e911), roaming, location and availability
- Network discovery capabilities include information on service provider, QoS capabilities
- SSP (service subscription provider) carrier or operator; SSPN is their network
- □ 802.21 is developing MIH (media independent handover)
 - GAS (generic advertising service) defines a way for a station to access the Advertising Server that has information about 802.11 and 802.16 networks
 - Information on SSPN, its corresponding SSID, radio, available services, etc.
 - > 802.11u provides a means for a station to access the 802.21 information server to find all the information in one place.

IEEE 802.16 Overview

- Network Management Task Group
 - > P802.16g, Management Plane Procedures & Services
 - > P802.16i, Mobile Management Information Base
 - > P802.16k, 802.16 Bridging (for 802.1d)
- B02.16h, License-Exempt Task Group
 - Developing PAR (project authorization request)
 - > A joint meeting next week with 802.11 TGy and 802.19
- □ 802.16j, Mobile Multihop Relay
 - > developing PAR
- □ 802.16m, AMT Advanced Air Interface
 - > developing PAR

http://grouper.ieee.org/groups/802/16

ITU International Mobile Telecommunications

□ IMT-2000

- Global standard for third generation (3G) wireless communications
- Provides a framework for worldwide wireless access by linking the diverse systems of terrestrial and satellite based networks.
- > Data rate limit is approximately 30 Mbps

 Detailed specifications contributed by 3GPP, 3GPP2, ETSI and others

IMT-Advanced

New generation framework for mobile communication systems beyond IMT-2000 where Deployment around 2010 to 2015

- Data rates to reach around 100 Mbps for high mobility and 1 Gbps for nomadic networks (i.e. WLANs)
- > IEEE 802.16m working to define the high mobility interface
- IEEE 802.11 VHT SG (very high throughput study group) working to define the nomadic interface

WIMAX IP-OFDMA

- The IEEE 802.16e-2005 Wireless MAN standard is based on the concept of scalable OFDMA* (S-OFDMA).
 - > A range of bandwidths to accommodate available spectrum

WiMAX Forum Release-1

- > Based on 802.16e-2005
- > 1.25, 5, 7, 8.75, 10 and 20 MHz channel bandwidths
- > Initial profiles are 5 and 10 MHz
- Licensed worldwide spectrum allocations include 2.3, 2.5, 3.3 and 3.5 GHz bands

* Orthogonal Frequency Division Multiple Access

WiMAX Smart Antenna Technologies

Beamforming

 Use multiple-antennas to spatially shape the beam to improve coverage and capacity

Spatial Multiplexing (SM)

- Multiple streams are transmitted over multiple antennas
- Multi-antenna receivers separate the streams to achieve higher throughput
- In uplink single-antenna stations can transmit simultaneously

Space-Time Code (STC)

 Transmit diversity such as Alamouti code is supported to reduce fading

octoScope

2x2 MIMO SM increases the peak data rate twofold by transmitting two data streams.

IEEE 802.16d vs. 802.16e

	802.16d 2004	802.16e 2005
Cell radius	7 km NLOS 30 km LOS	5 km NLOS 30 km LOS
Bit Rate	Up to 10 Mbps / 3.5 MHz	Up to 15 Mbps / 5 MHz
Bandwidth	3.5, 7 MHz	5, 7, 10 MHz
Band	2.5, 3.5, 5.8 GHz	
Signaling	OFDM, 256 subcarriers	SOFDMA, 2048 subcarriers
Mobility	Fixed, nomadic	High mobility 60 km/h

3GPP Long Term Evolution

- LTE (Long Term Evolution) being developed as a 4G technology competing with 802.16
 - > 100 Mbps uplink; 50 Mbps downlink
 - > 5 km cells; 30 km with some degradation
 - Channels 1.25, 1.6, 2.5, 5, 10, 15, 20 MHz
- MIMO-based; smart antenna
- No products yet

IEEE 802 Wireless Workshop at Pulvermedia FMC Show

- http://www.pulver.com/fmc
- Wednesday September 5
 - ▶ 9:00 a.m. to 3:20 p.m.
- Tutorial on the 802.11, 802.16 and 802.21 Wireless standards that enable Fixed Mobile Convergence
- How these standards are evolving to support voice and video applications
- Wi-Fi and WiMAX technologies and solutions

Fanny Mlinarsky, President

octoScope, Inc. 387 Berlin Road Bolton, MA 01740

978-376-5841 fm@octoscope.com

RF and Wireless - architecture, performance analysis and test, industry standards